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Voxel-Mesh Network for Geodesic-Aware 3D
Semantic Segmentation of Indoor Scenes
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Abstract—In recent years, sparse voxel-based methods have become the state-of-the-arts for 3D semantic segmentation of indoor
scenes, thanks to the powerful 3D CNNs. Nevertheless, being oblivious to the underlying geometry, voxel-based methods suffer from
ambiguous features on spatially close objects and struggle with handling complex and irregular geometries due to the lack of geodesic
information. In view of this, we present Voxel-Mesh Network (VMNet), a novel 3D deep architecture that operates on the voxel and
mesh representations leveraging both the Euclidean and geodesic information. Intuitively, the Euclidean information extracted from
voxels can offer contextual cues representing interactions between nearby objects, while the geodesic information extracted from
meshes can help separate objects that are spatially close but have disconnected surfaces. To incorporate such information from the
two domains, we design an intra-domain attentive module for effective feature aggregation and an inter-domain attentive module for
adaptive feature fusion. Experimental results validate the effectiveness of VMNet: specifically, on the challenging ScanNet dataset for
large-scale segmentation of indoor scenes, it outperforms the state-of-the-art SparseConvNet and MinkowskiNet (74.6% vs 72.5% and
73.6% in mIoU) with a simpler network structure (17M vs 30M and 38M parameters).

Index Terms—geodesic information, mesh segmentation, point cloud semantic segmentation, 3D scene understanding.
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1 INTRODUCTION

THANKS to the tremendous progress of RGB-D scan-
ning methods in recent years [10], [27], [65], reliable

tracking and reconstruction of 3D surfaces using hand-
held, consumer-grade devices have become possible. Using
these methods, large-scale 3D datasets with reconstructed
surfaces and semantic annotations are now available [4],
[8]. Nevertheless, compared to 3D surface reconstruction,
3D scene understanding, i.e., understanding the semantics
of reconstructed scenes, is still a relatively open research
problem.

Inspired by the success of 2D CNN in image semantic
segmentation [5], [36], researchers have paid much attention
to the straightforward extension of this idea to 3D, by per-
forming volumetric convolution on regular grids [39], [45],
[68]. Specifically, surface reconstructions are first projected
to a discrete 3D grid representation, and then 3D convolu-
tional filters are applied to extract features by sliding kernels
over neighboring grid voxels [55], [64], [74]. Such features
can be smoothly propagated in the Euclidean domain to
accumulate strong contextual information. Unfortunately,
dense voxel-based methods require intensive computational
power and are thus limited to low-resolution cases [35].
To process large-scale data, sparse voxel convolutions [7],
[17] have been proposed to lower the computational re-
quirement by ignoring inactive voxels. Benefiting from the
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Fig. 1. Illustration of geodesic information loss caused by vox-
elization. Considering the green point at the arm of a chair, on an
input 3D mesh surface (Left), its geodesic neighbors (blue) can be
easily collected, and the points of different objects are naturally sep-
arated. After voxelization (Right), geodesic information is discarded
and only Euclidean neighbors (red) that are agnostic to the underlying
surface can be extracted. The scan section is taken from the ScanNet
dataset [8].

efficient sparse voxel convolutions, complex networks have
been built, achieving leading results on several 3D semantic
segmentation benchmarks [4], [8] and outperforming other
methods by large margins.

Despite the remarkable achievements, voxel-based meth-
ods are not perfect. One of their major limitations is the
geodesic information loss caused by the voxelization pro-
cess (see Fig. 1). Recent public datasets like ScanNet [8]
provide 3D scene reconstructions in the form of high-
quality triangular meshes, in which the surface information
is naturally encoded. On these meshes, vertices belong-
ing to different objects are well separated, and geodesic
features can be easily aggregated through edge connec-
tivities. However, the voxelization process omits all mesh
edges and only retains Euclidean positions of mesh vertices.
Consequently, convolutional filters operating on voxels are
agnostic to the underlying surfaces and, therefore, result in
two problems. First, these filters generate similar features



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 2

SparseConvNet

Unclassified Wall Floor Cabinet Bed Chair Sofa Table Door Window Bookshelf Picture Counter Desk Curtain Refrigerator Shower Curtain
Toilet Sink Other Furniture

Input Mesh Ours Ground Truth

Bathtub

Fig. 2. Limitations of voxel-based methods. (Upper) Some points of “chairs” are mistakenly classified into nearby classes in the Euclidean space
by SparseConvNet [17] since the convolutional filters produce ambiguous features for spatially close objects. (Lower) On areas with complex and
irregular geometries (e.g. , the base parts of “tables”), SparseConvNet fails to predict correct results due to the lack of geodesic information about
shape surfaces.

for voxels that are close in the Euclidean domain, even
though these voxels may belong to different objects and
are distant in the geodesic domain. As shown in the top
example of Fig. 2, these ambiguous features produce sub-
optimal predictions for objects that are spatially close. Sec-
ond, without the geodesic information about shape surfaces,
these Euclidean convolutions may struggle with learning
specific object shapes. As shown in the lower example of
Fig. 2, this property is problematic for segmentation on areas
with complex and irregular geometries.

We have discussed the advantages of voxel-based meth-
ods on contextual learning and their problems on geodesic
information loss. It is appealing to design a method re-
solving the problems while retaining these advantages by
leveraging both the Euclidean and geodesic information. A
possible solution is to take voxels and the original meshes
as the sources for the Euclidean and geodesic information,
respectively. It is therefore natural to ask how these two
representations can be combined in a common architecture.

To address this question, we propose the Voxel-Mesh
network (VMNet), a novel deep hierarchical architecture
for geodesic-aware 3D semantic segmentation. Starting from
a mesh representation, to extract informative contextual
features in the Euclidean domain, we first voxelize the input
mesh and apply sparse voxel convolutions. Next, to incor-
porate the geodesic information, the extracted contextual
features are projected from the Euclidean domain to the
geodesic domain, specifically, from voxels to mesh vertices.
These projected features are further fused and aggregated to
combine both the Euclidean and geodesic information.

In order to build such a deep architecture that is ca-
pable of effectively learning useful features incorporating
information from the two domains, it is critical to design
proper ways to aggregate intra-domain features and to fuse
inter-domain features. In view of the great success of self-
attention operators for feature processing [34], [42], [60],
we therefore present two key components of VMNet: Intra-
domain Attentive Aggregation Module and Inter-domain
Attentive Fusion Module. The former aims to aggregate the
projected features on the original meshes to incorporate the
geodesic information and the latter focuses on the effective
fusion of features from the two domains.

We conduct extensive experiments to demonstrate the
effectiveness of our method on the popular ScanNet v2
benchmark [8] and the recent Matterport3D benchmark [4].
VMNet outperforms existing sparse voxel-based methods
SparseConvNet [17] and MinkowskiNet [7] (74.6% vs 72.5%
and 73.6% in mIoU) with a simpler network structure (17M
vs 30M and 38M parameters) on the ScanNet dataset and
sets a new state-of-the-art on the Matterport3D dataset.

To summarize, our contributions are threefold:
1) We propose a novel deep architecture, VMNet, which

operates on the voxel and mesh representations, lever-
aging both the Euclidean and geodesic information.

2) We propose an intra-domain attentive aggregation
module, which effectively refines geodesic features
through edge connectivities.

3) We propose an inter-domain attentive fusion module,
which adaptively combines Euclidean and geodesic
features.

2 RELATED WORK

In this section, we first review relevant works on 3D se-
mantic segmentation, organized according to their inherent
convolutional categories, and then discuss the application
of attention mechanism in 3D semantic segmentation.
2D-3D. A conventional way of performing 3D semantic
segmentation is to first represent 3D shapes through their
2D projections from various viewpoints, and then leverage
existing image segmentation techniques and architectures
from the 2D domain [29], [30]. Instead of choosing a global
projection viewpoint, some researchers have proposed to
project local neighborhoods to local tangent planes and
process them with 2D convolutions [23], [58], [70]. Taking
the RGB frames as additional inputs, other researchers
have proposed methods that combine 2D and 3D features
through 2D-3D projection [9], [20]. Although these methods
can easily benefit from the success of image segmentation
techniques (mainly based on 2D CNNs), they often require
a large amount of additional 2D data, involve a complex
multi-view projection process, and rely heavily on view-
point selection. Some of these methods have attempted to
utilize geodesic information implicitly through mesh tex-
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Fig. 3. Overview of Voxel-Mesh Network (VMNet). Taking a colored mesh as input, we first rasterize it and apply voxel-based sparse convolutions
to extract contextual information in the Euclidean domain. These features are then projected from voxels to vertices, and are further aggregated
and fused in the geodesic domain producing distinctive per-vertex features. For simplicity, skip connections between the encoder and decoder are
neglected here and only three levels of hierarchical voxel downsampling and mesh simplification are shown.

tures [23] or point normal [58]. They achieve fairly decent
results but fail to fully exploit the geodesic information.
PointConv & SparseConv. Partly due to the difficulties of
handling mesh edges in deep neural networks, most existing
3D semantic segmentation methods take raw point clouds
or transformed voxels as input [1], [3], [30], [41], [44], [46],
[48], [51], [62]. Point-based methods apply convolutional
kernels to the local neighborhoods of points obtained using
k-NN or spherical search [21], [22], [56], [61], [63], [67], [72].
Numerous designs of point-based convolutional kernels
have been proposed [28], [31], [37], [59], [71]. In the case of
voxel-based methods, the raw 3D data is first transformed
into a voxel representation and then processed by standard
CNNs [24], [39], [45], [64], [74]. To address the cubic memory
and computation consumption problem of voxel-based op-
erations, recent works have made efforts to propose efficient
sparse voxel convolutions [7], [17], [57]. In both point-based
and voxel-based methods, features are aggregated over the
Euclidean space only. In contrast, we additionally consider
geodesic information of the underlying object surfaces.
GraphConv. Graph convolution networks can be grouped
into spectral networks [12], [54] and local filtering net-
works [2], [38], [40]. Spectral networks work well on clean
synthetic data, but are sensitive to reconstruction noise and
are thus not applicable to 3D semantic segmentation. Local
filtering networks define handcrafted coordinate systems
and apply convolutional operations over patches. For 3D
semantic segmentation, these methods often perform over
local neighborhoods of point clouds [26], [32] and are thus
oblivious to the underlying geometry.

Our method falls into both the SparseConv and Graph-
Conv categories. It is similar in spirit to the recent work
of Schult et al. [52], which combines a Euclidean-based
and a geodesic-based graph convolutions. However, instead
of concatenating features obtained from different convolu-
tional filters as done in [52], we first accumulate strong
contextual information in the Euclidean domain and then
adaptively fuse and aggregate geometric information in the
geodesic domain, leading to a significant better segmenta-
tion performance (see Section 4.3).
Attention. For 3D semantic segmentation, most existing
methods implement attention layers operating on the local
neighborhoods of point clouds for feature aggregation [15],
[61] or on downsampled point sets for context augmenta-

tion [66], [69]. In our work, instead of operating on point
clouds, we build attentive operators applying on triangu-
lar meshes. Moreover, in contrast to previous works that
process features in a single domain, we propose both an
intra-domain module and an inter-domain module.

3 METHODOLOGY
In this section, we first give an overview of our voxel-mesh
network in Section 3.1. Then we introduce the network ar-
chitecture in Section 3.2. The voxel-based contextual feature
aggregation branch is described in Section 3.3. Sections 3.4
and 3.5 depict the proposed attentive modules for intra-
domain feature aggregation and inter-domain feature fu-
sion, respectively. Finally, we discuss two well-known mesh
simplification methods, which are used to build a mesh
hierarchy for multi-level feature learning in Section 3.6.

3.1 Overview
VMNet deals with two types of 3D representations: voxels
and meshes. As depicted in Fig. 3, the network consists
of two branches: according to their operating domains, we
denote the upper one as the Euclidean branch and the lower
one as the geodesic branch.

To accumulate contextual information in the Euclidean
domain, taking a mesh as input, the colored vertices are
first voxelized and then fed to the Euclidean branch. Build-
ing on sparse voxel-based convolutions, we construct a U-
Net [49] like encoder-decoder structure, where the encoder
is symmetric to the decoder, including skip connections
between both. Multi-level sparse voxel-based feature maps
(S0, ...,Sl, ...,SL) can be extracted from the decoder.

Although these contextual features offer valuable se-
mantic cues for scene understanding, their unawareness of
the underlying geometric surfaces will lead to sub-optimal
results. Therefore, to incorporate geodesic information, the
accumulated contextual features are projected from the Eu-
clidean domain to the geodesic domain for further pro-
cessing (Section 3.3). In the geodesic branch, we prepare
a hierarchy of simplified meshes (M0, ...,Ml, ...,ML), in
which each level of simplified mesh Ml corresponds to
a downsampling level of sparse voxels Sl. Trace maps of
the mesh simplification processes are saved for unpooling
operations between mesh levels. At the first level of the
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Fig. 4. Network architecture of VMNet. We use a voxel-based 3D U-Net [49] as the contextual feature extractor, consisting of an encoder and
a decoder. Afterwards, at each level of the decoder, the aggregated contextual features are first projected from the Euclidean domain to the
geodesic domain, and then processed by the intra-domain attentive aggregation modules and the inter-domain attentive fusion modules defined
over triangular meshes, yielding distinctive per-vertex features enriched with both the Euclidean and geodesic information. The number above each
layer indicates the number of its corresponding feature channel.
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Fig. 5. 2D illustration of voxel-vertex projection. Vertices (x1, y1) and
(x2, y2) share the same set of neighboring voxels but their projected
features are different through trilinear interpolation (bilinear interpolation
for the 2D case).

decoding process (level L), the features are projected from
voxels SL to mesh vertices ML and then refined through
intra-domain attentive aggregation (Section 3.4). The result-
ing geodesic features of ML are unpooled to the next level
ML−1. At each following level l, the Euclidean features
projected from Sl and the unpooled geodesic features of
Ml are first adaptively combined through inter-domain
attentive fusion (Section 3.5) and then the fused features are
further refined through intra-domain attentive aggregation
before being unpooled to the next level.

3.2 Network Architecture

The network architecture adopted in VMNet is illustrated
in Fig. 4. In the upper branch (i.e., the Euclidean branch),
the network is mainly built upon submanifold sparse con-
volution (SSC) layers and sparse convolution (SC) layers,
both of which are originally introduced by Graham et
al. [17] for 3D semantic segmentation. The basic building
module is a residual block consisting of two layers of SSC
with a skip connection implemented by addition. Each pair
of adjacent residual blocks are connected through an SC
layer, which performs downsampling (encoding stage) or
upsampling (decoding stage) of the sparse voxels S . In total,
there are 13 residual blocks and 7 levels of sparse voxels
(S0, ...,Sl, ...,S6). In the lower branch (i.e., the geodesic
branch), similar to the upper one, the network is constructed
by residual blocks, each consisting of two layers of our

proposed intra-domain attention layers (Section 3.4), which
operate on the triangular meshes M. Each pair of adja-
cent residual blocks in the geodesic branch are connected
through a mesh unpooling layer. The distinctive per-vertex
features on the last mesh level M0 are used for seman-
tic prediction. Between the two branches, the projected
Euclidean features and the aggregated geodesic features
are adaptively fused through our proposed inter-domain
attention layers (Section 3.5).

3.3 Voxel-based Contextual Feature Aggregation

Voxelization. At mesh level M0, with all edge connectiv-
ities omitted, the input features (colors) of mesh vertices
{(Vi, fi)} are transformed into the voxel cells {Vu,v,w} by
averaging all features fi whose corresponding coordinate
Vi : (xi, yi, zi) falls into the voxel cell (u, v, w):

fu,v,w =
1

Nu,v,w

n∑
i=1

B[floor(xi · r) = u,

floor(yi · r) = v, floor(zi · r) = w] · fi,
(1)

where r denotes the voxel resolution, B[·] is the binary
indicator of whether vertex Vi belongs to the voxel cell
(u, v, w), and Nu,v,w is the number of vertices falling into
that cell [35].
Contextual Feature Aggregation. To accumulate contextual
information, we construct a simple U-Net [49] structure
based on voxel convolutions. We adopt the sparse imple-
mentation provided by [57].
Voxel-vertex Projection. With the contextual features aggre-
gated in the Euclidean domain, at each level l, we transform
the features of voxels Sl back to vertices Ml for further
processing in the geodesic domain. Inspired by previous
works [35], [57], we compute each vertex’s feature utilizing
trilinear interpolation over its neighboring eight voxels.
Through this means, the projected features are distinct even
for the vertices sharing the same set of neighboring voxels.
A 2D illustration of the projection is shown in Fig. 5.
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Fig. 6. Illustration of intra-domain attentive aggregation module.
(Left) Intra-domain attention layer operates on mesh vertices aggregat-
ing geodesic information through edge connectivities. (Right) The ag-
gregation module consists of two attention layers with skip connections.

3.4 Intra-domain Attentive Aggregation Module

After contextual feature aggregation and voxel-vertex pro-
jection, to effectively refine the projected features, we design
an intra-domain attentive aggregation module operating on
the geodesic domain. As shown in Fig. 6 (Left), at each
mesh level, we perform attentive aggregation on the graph
G = (V, E) induced by the underlying mesh M. Note
that we neglect the level superscript l to ease readability.
Our intra-domain attention layer is based on the standard
scalar attention [60], which is often used for point clouds
in 3D semantic segmentation, but not for triangular meshes.
Specifically, at layer k, the output feature f

′geo
i of vertex Vi

with an input feature fgeoi is computed as:

f
′geo
i = ρintrak (fgeoi ) +

∑
j∈Ni

ωijα
intra
k (fgeoj ),

ωij = softmax(
φintra
k (fgeoi )Tψintra

k (fgeoj )
√
d

),

(2)

where Ni is the one-ring neighborhood of vertex Vi. The
functions ρintrak , αintra

k , φintra
k , and ψintra

k are vertex-wise
feature transformations implemented by MLP, ωij is the
attention coefficient, and d is the size of output feature chan-
nels. Since the positional information is naturally embedded
in the voxel-based contextual feature aggregation step, we
do not implement a position encoding function explicitly.
Our attention layer is inspired by the implementation in
[53], which operates on abstract graphs for semi-supervised
node classification, while our method operates on 3D mesh
graphs for geodesic feature aggregation.

Building on the intra-domain attention layer, we design
an aggregation module performing two steps of attentive
feature aggregation on each simplified mesh level (see Fig. 6
(Right)).

3.5 Inter-domain Attentive Fusion Module

Operating on both the voxel and mesh representations poses
a demand for Euclidean and geodesic feature fusion. To
adaptively combine features from the two domains, we pro-
pose an inter-domain attentive fusion module. As depicted
in Fig. 7 (Left), between each pair of sparse voxel level S and
mesh level M (except for level L), we perform attentive
fusion on the same graph G = (V, E) as the one used for
intra-domain aggregation (level superscript l is neglected).
However, unlike intra-domain attention, which processes
features in the same domain, inter-domain attention takes
as input both the geodesic features fgeo and the Euclidean
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Fig. 7. Illustration of inter-domain attentive fusion module. (Left)
Inter-domain attention layer adaptively combines geodesic features and
Euclidean features on mesh vertices. (Right) The fused feature map
generated by the inter-domain attention layer is further combined with
the original geodesic feature map and the projected Euclidean feature
map through concatenation.

features feuc projected from voxels. At layer k, the fused
feature ffusei of vertex Vi is computed as:

ffusei = ρinterk (feuci ) +
∑
j∈Ni

ωijα
inter
k (fgeoj ),

ωij = softmax(
φinter
k (feuci )Tψinter

k (fgeoj )
√
d

),

(3)

where Ni is the same one-ring neighborhood of vertex Vi
as the one used for intra-domain aggregation. Unlike the
one in intra-domain attention, the inter-domain attention
coefficient ωij is conditioned on both the Euclidean and
geodesic features enabling the network to adaptively fuse
features from the two domains.

As shown in Fig. 7 (Right), the proposed inter-domain
attentive fusion module takes both the Euclidean features
and the geodesic features as inputs. These features are
fed to one inter-domain attention layer followed by layer
normalization and ReLU activation. Before being passed on
for further processing, the fused feature map is concatenated
with the projected Euclidean feature map and the original
geodesic feature map.

3.6 Mesh Simplification
To construct a deep architecture for multi-level fea-
ture learning, we generate a hierarchy of mesh levels
(M0, ...,Ml, ...,ML) of increasing simplicity, interlinked
by pooling trace maps. Each level of simplified mesh cor-
responds to a level of downsampled 3D sparse voxels. For
mesh simplification, there are two well-known methods
from the geometry processing domain: Vertex Clustering
(VC) [50] and Quadric Error Metrics (QEM) [16]. As shown
in Fig. 8, during the vertex clustering process, a 3D uniform
grid with cubical cells of a fixed side length is placed over
the input graph and all vertices falling into the same cell
are grouped. This generates uniform-sampled simplified
meshes, possibly with topology changes and non-manifold
faces. On the contrary, the QEM method incrementally col-
lapses mesh edges according to an approximate error of the
geometric distortion introduced by this collapse, and thus
has explicit control over mesh topology (see Fig. 9). Since
our goal is to extract meaningful geodesic information, we
prefer the QEM method for its better topology-preserving
property. However, directly applying the QEM method
on the original meshes results in high-frequency signals in
noisy areas [52]. Therefore, we apply the VC method on
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Fig. 8. Illustration of Vertex Clustering for mesh simplification.
Vertices falling in the same cell are merged to form a new vertex. The
resulting mesh might be non-manifold (red cell) or have its topology
changed (blue cell).

Fig. 9. Illustration of Quadric Error Metrics based edge collapse for
mesh simplification. The edge between two red vertices is collapsed
and the resulting mesh is re-triangulated with its topology preserved.

the original mesh for the first two mesh levels and then
apply the QEM method for the remaining mesh levels. We
present an ablation study on mesh simplification methods
in Section 4.4.

4 EXPERIMENTS
To demonstrate the effectiveness of our proposed method,
we now present various experiments conducted on two
large-scale 3D scene segmentation datasets, which contain
meshed point clouds of various indoor scenes. We first
introduce the datasets and evaluation metrics that we used
in Section 4.1, and then present the implementation details
for reproduction in Section 4.2. We report the results on the
ScanNet and Matterport3D datasets in Section 4.3, and the
ablation studies in Section 4.4.

4.1 Datasets and Metrics

ScanNet v2 [8]. ScanNet dataset contains 3D meshed point
clouds of a wide variety of indoor scenes. Each scene is
provided with semantic annotations and reconstructed sur-
faces represented by a textured mesh. The dataset contains
20 valid semantic classes. We perform all our experiments
using the public training, validation, and test split of 1201,
312, and 100 scans, respectively.
Matterport3D [4]. Matterport3D is a large RGB-D dataset
of 90 building-scale scenes. Similar to ScanNet, the full 3D
mesh reconstruction of each building and semantic annota-
tions are provided. The dataset contains 21 valid semantic
classes. Following previous works [9], [23], [46], [52], [56],
[58], we split the whole dataset into training, validation, and
test sets of size 61, 11, and 18, respectively.
Metrics. For evaluation, we use the same protocol as intro-
duced in previous works [7], [17], [46], [52]. We report mean
class intersection over union (mIoU) results for ScanNet and
mean class accuracy for Matterport3D. During testing, we
project the semantic labels to the vertices of the original
meshes and test directly on meshes.

1. http://kaldir.vc.in.tum.de/scannet benchmark/

TABLE 1
Mean intersection over union scores on ScanNet Test [8]. Detailed
results can be found on the ScanNet benchmarking website1and in the

supplementary material.

Method mIoU(%) Conv Category
TangentConv [58] 43.8

2D-3D

SurfaceConvPF [70] 44.2
3DMV [9] 48.3

TextureNet [23] 56.6
JPBNet [6] 63.4

MVPNet [25] 64.1
V-MVFusion [29] 74.6

BPNet [20] 74.9
PointNet++ [46] 33.9

PointConv

FCPN [47] 44.7
PointCNN [33] 45.8

DPC [13] 59.2
MCCN [19] 63.3

PointConv [67] 66.6
KPConv [59] 68.4

JSENet [21] 69.9
SparseConvNet [17] 72.5 SparseConvMinkowskiNet [7] 73.6

SPH3D-GCN [32] 61.0
GraphConvHPEIN [26] 61.8

DCM-Net [52] 65.8
VMNet (Ours) 74.6 Sparse+Graph Conv

4.2 Implementation Details

In this section, we discuss the implementation details for
our experiments. VMNet is coded in Python and PyTorch
(Geometric) [14], [43]. All the experiments are conducted on
one NVIDIA Tesla V100 GPU.
Data Preparation. We perform training and inference on
full meshes without cropping. For the Euclidean branch of
VMNet, input meshes are voxelized at a resolution of 2 cm.
To compute the hierarchical mesh levels accordingly for the
geodesic branch, we first apply the VC method on the input
mesh with the respective cubical cell lengths of 2 cm and 4
cm for the first two mesh levels. For each remaining level,
the QEM method is applied to simplify the mesh until the
vertex number is reduced to 30% of its preceding mesh level.
For better generalization ability, edges of all mesh levels are
randomly sampled during training. We use the vertex colors
as the only input features and apply data augmentation,
including random scaling, rotation around the gravity axis,
spatial translation, and chromatic jitter.
Training Details. We train the network end-to-end by min-
imizing the cross entropy loss using Momentum SGD with
the Poly scheduler decaying from learning rate 1e-1.

4.3 Results and Analysis

Quantitative Results. We present the performance of our
approach compared to recent competing approaches on the
ScanNet benchmark [8] in Table 1. All the methods are
grouped by the approaches’ inherent convolutional cate-
gories as discussed in Section 2. As shown in Table 1, our
method leads to a 74.6% mIoU score, achieving a signif-
icant performance gain of 8.8 % mIoU comparing to the
existing best-performing graph convolutional approach, i.e.,
DCM-Net [52], and 1.0 % mIoU comparing to the lead-
ing sparse convolutional approach, i.e., MinkowskiNet [7].
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TABLE 2
Mean class accuracy scores on the Matterport3D Test [4]. The same network definition as for the ScanNet benchmark is used. Conv

Category: (I) 2D-3D, (II) PointConv, (III) VoxelConv, (IV) GraphConv, (V) Sparse+Graph Conv.

Method mAcc(%) Cat wall floor cab bed chair sofa table door wind shf pic cntr desk curt ceil fridg show toil sink bath other
TangentConv [58] 46.8 I 56.0 87.7 41.5 73.6 60.7 69.3 38.1 55.0 30.7 33.9 50.6 38.5 19.7 48.0 45.1 22.6 35.9 50.7 49.3 56.4 16.6

3DMV [9] 56.1 I 79.6 95.5 59.7 82.3 70.5 73.3 48.5 64.3 55.7 8.3 55.4 34.8 2.4 80.1 94.8 4.7 54.0 71.1 47.5 76.7 19.9
TextureNet [23] 63.0 I 63.6 91.3 47.6 82.4 66.5 64.5 45.5 69.4 60.9 30.5 77.0 42.3 44.3 75.2 92.3 49.1 66.0 80.1 60.6 86.4 27.5

SplatNet [56] 26.7 II 90.8 95.7 30.3 19.9 77.6 36.9 19.8 33.6 15.8 15.7 0.0 0.0 0.0 12.3 75.7 0.0 0.0 10.6 4.1 20.3 1.7
PointNet++ [46] 43.8 II 80.1 81.3 34.1 71.8 59.7 63.5 58.1 49.6 28.7 1.1 34.3 10.1 0.0 68.8 79.3 0.0 29.0 70.4 29.4 62.1 8.5

ScanComplete [11] 44.9 III 79.0 95.9 31.9 70.4 68.7 41.4 35.1 32.0 37.5 17.5 27.0 37.2 11.8 50.4 97.6 0.1 15.7 74.9 44.4 53.5 21.8
DCM-Net [52] 66.2 IV 78.4 93.6 64.5 89.5 70.0 85.3 46.1 81.3 63.4 43.7 73.2 39.9 47.9 60.3 89.3 65.8 43.7 86.0 49.6 87.5 31.1
VMNet (Ours) 67.2 V 85.9 94.4 56.2 89.5 83.7 70.0 54.0 76.7 63.2 44.6 72.1 29.1 38.4 79.7 94.5 47.6 80.1 85.0 49.2 88.0 29.0

TABLE 3
Comparison of run-time complexity against SOTA sparse

voxel-based methods. For a fair comparison, we report the latencies
of both their original versions (Ori) and our implementations using the

same type of sparse convolution (TS) as VMNet.

Method Params (M) Latency (ms) mIoU(%)Ori TS
SparseConvNet [17] 30.1 712 102 72.5

MinkowskiNet [7] 37.8 629 105 73.6
VMNet (Ours) 17.5 - 107 74.6

TABLE 4
Comparison of run-time complexity against SOTA methods of

different convolutional categories.

Method Conv Category Params (M) Latency (ms) mIoU(%)
MVPNet [25] 2D-3D 24.6 95 64.1

PointConv [67] PointConv 21.7 307 66.6
KPConv [59] PointConv 14.1 52 68.4

DCM-Net [52] GraphConv 0.76 151 65.8
VMNet (Ours) Sparse+Graph Conv 17.5 107 74.6

Our method achieves results comparable to the SOTA 2D-
3D method BPNet [20], which is a concurrent work on
CVPR2021 utilizing both 2D and 3D data while VMNet
takes as input only the 3D data. For a fair comparison,
the result of OccuSeg [18] is not listed in this table, since
it utilizes extra instance labels for training. We also evaluate
our algorithm on the novel Matterport3D dataset [4] and
report the results in Table 2. VMNet achieves overall state-
of-the-art results outperforming the previous best method
by 1% in terms of mean class accuracy. Since some methods
only report results in one of these two datasets, the listed
methods in Tables 1 and 2 are different.
Qualitative Comparison. Fig. 10 shows our qualitative re-
sults on the ScanNet validation set and Fig. 11 shows the
results on the Matterport3D test set. Compared to the SOTA
sparse voxel-based method SparseConvNet, which operates
in the Euclidean domain solely, VMNet generates more dis-
tinctive features for close-located objects and better handles
complex geometries thanks to the combined Euclidean and
geodesic information. More qualitative results can be found
in the supplementary material.
Complexity. We compare our method with representative
SOTA methods of various convolutional categories in terms
of their run-time complexity. We randomly select a scene
from the ScanNet validation set and compute the latency
results by averaging the inference time of 100 forward
passes.

In Table 3, we present the results of two SOTA
sparse voxel-based methods, i.e., SparseConvNet [17] and
MinkowskiNet [7]. Although the accuracies of sparse voxel-
based methods are not dependent on the implementation

TABLE 5
Ablation study: (Left) Euclidean and geodesic information; (Right)

Network components.

Information mIoU(%)
Geo Only 58.1
Euc Only 71.0

VMNet(Geo+Euc) 73.3

Baseline Intra Inter mIoU(%)
✓ 70.2
✓ ✓ 72.1
✓ ✓ ✓ 73.3

TABLE 6
Ablation study: (Left) Attentive operators; (Right) Mesh simplification.

Operator mIoU(%)
Vector Attention 72.3

EdgeConv 72.6
Scalar Attention 73.3

Method mIoU(%)
VC only 72.3

QEM only 72.9
VC + QEM 73.3

of sparse convolution, the latencies of these methods are
highly dependent on the implementation. Therefore, we re-
implement SparseConvNet and MinkowskiNet using the
same version of sparse convolution (i.e., torchsparse [57]) as
VMNet for a fair comparison. As shown in the table, VMNet
achieves the highest mIoU score with the least number of
parameters. It implies that, compared to extracting features
in the Euclidean domain alone, combining the Euclidean
and geodesic information leads to a more effective aggre-
gation of features, even with a simpler network structure.
The latency of VMNet is slightly higher than our new
implementations of the other two methods. This is caused
by the unoptimized projection operations, which are left for
future improvement.

In Table 4, we report more complexity comparisons
of our network against other representative methods, in-
cluding MVPNet [25], PointConv [67], KPConv [59], and
DCM-Net [52]. While achieving the highest mIoU, VMNet
is largely comparable to these representative methods, in
terms of both inference time and parameter size.

4.4 Ablation Study
In this section, we conduct a number of controlled experi-
ments that demonstrate the effectiveness of building mod-
ules in VMNet, and also examine some specific decisions in
VMNet design. Since the test set of ScanNet is not available
for multiple tests, all experiments are conducted on the
validation set, keeping all hyper-parameters the same.
Euclidean and Geodesic Information. In Section 3, we
advocate the combination of Euclidean and geodesic infor-
mation. To investigate their impacts, we compare VMNet
to two baseline networks: “Euc only” is a U-Net structure
based on sparse convolutions operating on voxels and “Geo
only” has the same structure but is based on the proposed
intra-domain attention layers operating on meshes. For a
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Fig. 10. Qualitative results on ScanNet Val [8]. The key parts for comparison are highlighted by dotted red boxes.

fair comparison, we keep the layer numbers of these base-
lines the same as the Euclidean branch of VMNet but in-
crease their channel numbers to make sure all the compared
methods have similar parameter sizes. As shown in Table 5
(Left), VMNet outperforms the two baselines showcasing
the benefit of combining information from the two domains.
Network Components. In Table 5 (Right), we evaluate the
effectiveness of each component of our method. “Baseline”
represents the Euclidean branch of VMNet, which is a U-
Net network built on voxel convolutions. “Intra” refers to
the intra-domain attentive aggregation module and “In-
ter” refers to the inter-domain attentive fusion module. As
shown in the table, by combining the intra-domain attentive
aggregation module with the baseline, we can improve
the performance by 1.9%. This improvement is brought by
the introduction of geodesic information through feature
refinement on meshes. From the inter-domain attentive fu-
sion module, we further gain about 1.2% improvement in
performance by adaptive fusion of features from the two
domains.
Attentive Operators. In Sections 3.4 and 3.5, we adopt the
standard scalar attention [60] to build the intra-domain at-
tentive aggregation module and the inter-domain attentive
fusion module. In Table 6 (Left), we evaluate the influence
of different forms of attentive operators in our architecture.
“Scalar Attention” refers to the operators used in VMNet
as presented in Equations 2 and 3. “Vector Attention” rep-
resents a variant of Scalar Attention, in which attention
weights are not scalars but vectors that can modulate in-
dividual feature channels. It has been widely adopted in
previous attention-based methods operating on 3D point
clouds [61], [73]. Specifically, at layer k, the output feature
f

′

i of vertex Vi with an input feature fi is computed as (note
that the superscripts are ignored here for simplicity):

f
′

i = ρk(fi) +
∑
j∈Ni

Ωij ⊙ αk(fj),

Ωij = softmax(γk(βk(φk(fi), ψk(fj)))),

(4)

where Ni is the one-ring neighborhood of vertex Vi. The

functions ρk, αk, φk, and ψk are vertex-wise feature trans-
formations implemented by MLP, Ωij is the attention vector,
⊙ denotes channel-wise multiplication, βk is a relation func-
tion (here we implement it by subtraction following [73]),
and γk is a mapping function (implemented by MLP) that
produces attention vectors for feature aggregation.

Moreover, we implement a non-attention baseline built
on the popular EdgeConv [63], which is originally proposed
to operate on kNN graphs of 3D point clouds. Specifically,
at layer k, the output feature f

′

i of vertex Vi with an input
feature fi is computed as:

f
′

i =
∑
j∈Ni

hk(fi||fj − fi), (5)

where Ni is the one-ring neighborhood of vertex Vi. hk is
a feature mapping function implemented by MLP and ||
denotes concatenation.

As shown in Table 6 (Left), the scalar attention used in
VMNet achieves the best result and outperforms the non-
attention baseline “EdgeConv” by 0.7% and the attentive
variant “Vector Attention” by 1.0%. Interestingly, the non-
attention baseline “EdgeConv” performs slightly better than
the attention-based baseline “Vector Attention”. A possible
reason is that “Vector Attention” adaptively modulates each
individual feature channel and this property appears to be
overfitting in our case.
Mesh Simplification. In Section 3.6, we discuss two mesh
simplification methods Vertex Clustering (VC) and Quadric
Error Metrics (QEM) for multi-level feature learning. We
apply the VC method on the first two mesh levels to remove
high-frequency signals in noisy areas, and then apply the
QEM method on the remaining mesh levels for its better
topology-preserving property. To justify our choice, we train
three models with the same network definition but per-
forming on different mesh hierarchies, and compare their
performances in Table 6 (Right). “VC+QEM” refers to the
mesh hierarchy simplified by the combination of the VC and
QEM methods as described in Section 4.2. For “VC only”, at
each mesh level Ml, we set the cubical cell lengths of the



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 9

Unclassified Wall Floor Cabinet Bed Chair Sofa Table Door Window Bookshelf Picture Counter Desk Curtain Refrigerator Shower Curtain
Toilet Sink Other FurnitureBathtub

SparseConvNetInput Mesh Ours Ground Truth

Ceiling

Fig. 11. Qualitative results on Matterport3D Test [4]. The key parts for comparison are highlighted by dotted red boxes.
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Fig. 12. Ablation study: Multi-level feature refinement.

VC method to the same size as the lengths of voxels in the
corresponding voxel level Sl. For “QEM only”, at each mesh
level Ml, the QEM method simplifies the mesh until the
vertex number is reduced to 30% of its preceding mesh level
Ml−1. As shown in Table 6 (Right), we witness a significant
performance gap of 1.0% between the results of “VC+QEM”
and “VC only”. We assume that the more faithful geodesic
information provided by meshes simplified through the
QEM method leads to the performance gain. We also notice
that the performance of “QEM only” is slightly lower than
the one of “VC+QEM”. It may be caused by the resulting
high-frequency noises of directly applying the QEM method
on the original meshes.
Multi-level Feature Aggregation and Fusion. To measure
the effects of individual geodesic feature refinement levels,
we successively add the aggregation and fusion modules
to the overall architecture. Except for the baseline with no
geodesic branch, we start with the outermost mesh levels
M0&M1 to retain one fusion module and two aggregation
modules. Next, along with each added mesh level, one

Primal Inter-domain Attention

: Vertex with geodesic feature
: Vertex with Euclidean feature

Dual Inter-domain Attention

: Vertex with geodesic feature
: Vertex with Euclidean feature

Fig. 13. Illustration of primal and dual inter-domain attention. (Left)
The primal inter-domain attention generates query vectors from the
Euclidean features and aggregates the neighboring geodesic features.
(Right) The dual inter-domain attention generates query vectors from
the geodesic features and aggregates the neighboring Euclidean fea-
tures.

fusion module and one aggregation module are added. The
results are presented in Fig. 12. We witness that the first
four levels bring the most performance gain, indicating
the higher importance of finer-level meshes for geometric
learning.
Design Choice of Inter-domain Attention. As described in
Section 3.5, we proposed an inter-domain attentive module
for adaptive feature fusion. The module takes both the
Euclidean features and the geodesic features as input and
utilizes the attention mechanism, in which the attention
weights are conditioned on features from both the domains.
To build such an inter-domain attentive module, there are
two design choices. As shown in Fig. 13, we denote the
one used in VMNet as the primal inter-domain attention
and denote the other one as the dual inter-domain attention.
We empirically find that the primal inter-domain attention
yields better results than the dual one (73.3% vs 72.8% in
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Fig. 14. Network architecture Variant 1. Sharing the same encoder
with VMNet, Variant 1 decodes the features in the Euclidean domain.
For simplicity, only two levels of network are shown.

mIoU on ScanNet Val). It may be caused by the different
importance of the Euclidean features and the geodesic fea-
tures in the task of indoor scene 3D semantic segmentation.

Design Choice of Network Architecture. As shown in
Fig. 3, VMNet encodes contextual information in the Eu-
clidean domain and then decodes the aggregated features
in the geodesic domain. To justify our design choice, we
construct two variants of VMNet.

Variant 1 (Fig. 14) shares the same encoder structure with
VMNet. However, in the decoding part, instead of projecting
the Euclidean features to the geodesic domain, Variant 1
projects the aggregated and fused geodesic features back to
the Euclidean domain, and the per-voxel features on the last
voxel level S0 are used for semantic prediction. We compare
the performances of Variant 1 and VMNet in Table 7. While
having similar network complexity, Variant 1 performs sig-
nificantly worse than our proposed VMNet. We speculate
that the problem lies in the projection from vertices to vox-
els. To better preserve the geodesic information, we apply
the QEM method to simplify the meshes resulting in non-
uniform vertices. In the projection from vertices to voxels,
multiple vertices thus correspond to a single voxel in areas
with complex geometries and a voxel in areas with simple
geometries may have no corresponding vertices at all. In
contrast, projecting from uniform voxels to non-uniform
vertices does not have this problem since all the vertices are
covered and vertices sharing the same neighboring voxels
have distinctive features through trilinear interpolation.

Variant 2 (Fig. 15) shares the same decoder structure with
VMNet. In its encoding part, we incorporate both the voxel
and mesh representations for contextual feature aggrega-
tion. As shown in Table 7, Variant 2 performs slightly better
than our proposed VMNet (0.1% improvement in terms of
mIoU) but brings considerable extra complexity. For a better
complexity-performance trade-off, we prefer the proposed
design choice of VMNet.

TABLE 7
Ablation study: Variants of network architecture.

Method Params (M) Latency (ms) mIoU(%)
Variant 1 17.6 113 72.4
Variant 2 18.3 155 73.4

VMNet 17.5 107 73.3

Voxel-vertex
Projection

Inter-domain
Attentive FusionVoxelization

Intra-domain
Attentive

Aggregation

Sparse
Conv

Downsample

Sparse
Conv

Upsample

Mesh
Simplification

Mesh
Unpooling

Intra-domain
Attentive

Aggregation

Inter-domain
Attentive Fusion

Fig. 15. Network architecture Variant 2. Sharing the same decoder
with VMNet, Variant 2 incorporates both the voxel and mesh represen-
tations for contextual feature encoding. For simplicity, only two levels of
network are shown.

5 CONCLUSION

In this paper, we have presented a novel 3D deep archi-
tecture for semantic segmentation of indoor scenes, named
Voxel-Mesh Network (VMNet). Aiming at addressing the
problem of lacking consideration for the geodesic informa-
tion in voxel-based methods, VMNet takes advantages of
both the semantic contextual information available in voxels
and the geometric surface information available in meshes
to perform geodesic-aware 3D semantic segmentation. Ex-
tensive experiments show that VMNet achieves state-of-the-
art results on the challenging ScanNet and Matterport3D
datasets, significantly improving over strong baselines. We
hope that our work will inspire further investigation of
the idea of combining Euclidean and geodesic information,
the development of new intra-domain and inter-domain
modules, and the application of geodesic-aware networks
to other tasks, such as 3D instance segmentation.
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TABLE 1
Mean intersection over union scores on ScanNet Test [4]. This is a detailed version of Table 1 in the main paper.
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TangentConv [20] 43.8

2D-3D

0.437 0.646 0.474 0.369 0.645 0.353 0.258 0.282 0.279 0.918 0.298 0.147 0.283 0.294 0.487 0.562 0.427 0.619 0.633 0.352
SurfaceConvPF [23] 44.2 0.505 0.622 0.380 0.342 0.654 0.227 0.397 0.367 0.276 0.924 0.240 0.198 0.359 0.262 0.366 0.581 0.435 0.640 0.668 0.398

3DMV [5] 48.3 0.484 0.538 0.643 0.424 0.606 0.310 0.574 0.433 0.378 0.796 0.301 0.214 0.537 0.208 0.472 0.507 0.413 0.693 0.602 0.539
TextureNet [11] 56.6 0.672 0.664 0.671 0.494 0.719 0.445 0.678 0.411 0.396 0.935 0.356 0.225 0.412 0.535 0.565 0.636 0.464 0.794 0.680 0.568

JPBNet [2] 63.4 0.614 0.778 0.667 0.633 0.825 0.420 0.804 0.467 0.561 0.951 0.494 0.291 0.566 0.458 0.579 0.764 0.559 0.838 0.814 0.598
MVPNet [12] 64.1 0.831 0.715 0.671 0.590 0.781 0.394 0.679 0.642 0.553 0.937 0.462 0.256 0.649 0.406 0.626 0.691 0.666 0.877 0.792 0.608

V-MVFusion [14] 74.6 0.771 0.819 0.848 0.702 0.865 0.397 0.899 0.699 0.664 0.948 0.588 0.330 0.746 0.851 0.764 0.796 0.704 0.935 0.866 0.728
BPNet [9] 74.9 0.909 0.818 0.811 0.752 0.839 0.485 0.842 0.673 0.644 0.957 0.528 0.305 0.773 0.859 0.788 0.818 0.693 0.916 0.856 0.723

PointNet++ [17] 33.9

PointConv

0.584 0.478 0.458 0.256 0.360 0.250 0.247 0.278 0.261 0.677 0.183 0.117 0.212 0.145 0.364 0.346 0.232 0.548 0.523 0.252
FCPN [18] 44.7 0.679 0.604 0.578 0.380 0.682 0.291 0.106 0.483 0.258 0.920 0.258 0.025 0.231 0.325 0.480 0.560 0.463 0.725 0.666 0.231

PointCNN [16] 45.8 0.577 0.611 0.356 0.321 0.715 0.299 0.376 0.328 0.319 0.944 0.285 0.164 0.216 0.229 0.484 0.545 0.456 0.755 0.709 0.475
DPC [6] 59.2 0.720 0.700 0.602 0.480 0.762 0.380 0.713 0.585 0.437 0.940 0.369 0.288 0.434 0.509 0.590 0.639 0.567 0.772 0.755 0.592

MCCN [8] 63.3 0.866 0.731 0.771 0.576 0.809 0.410 0.684 0.497 0.491 0.949 0.466 0.105 0.581 0.646 0.620 0.680 0.542 0.817 0.795 0.618
PointConv [22] 66.6 0.781 0.759 0.699 0.644 0.822 0.475 0.779 0.564 0.504 0.953 0.428 0.203 0.586 0.754 0.661 0.753 0.588 0.902 0.813 0.642

KPConv [21] 68.4 0.847 0.758 0.784 0.647 0.814 0.473 0.772 0.605 0.594 0.935 0.450 0.181 0.587 0.805 0.690 0.785 0.614 0.882 0.819 0.632
JSENet [10] 69.9 0.881 0.762 0.821 0.667 0.800 0.522 0.792 0.613 0.607 0.935 0.492 0.205 0.576 0.853 0.691 0.758 0.652 0.872 0.828 0.649

SparseConvNet [7] 72.5 SparseConv 0.647 0.821 0.846 0.721 0.869 0.533 0.754 0.603 0.614 0.955 0.572 0.325 0.710 0.870 0.724 0.823 0.628 0.934 0.865 0.683
MinkowskiNet [3] 73.6 0.859 0.818 0.832 0.709 0.840 0.521 0.853 0.660 0.643 0.951 0.544 0.286 0.731 0.893 0.675 0.772 0.683 0.874 0.852 0.727
SPH3D-GCN [15] 61.0

GraphConv
0.858 0.772 0.489 0.532 0.792 0.404 0.643 0.570 0.507 0.935 0.414 0.046 0.510 0.702 0.602 0.705 0.549 0.859 0.773 0.534

HPEIN [13] 61.8 0.729 0.668 0.647 0.597 0.766 0.414 0.680 0.520 0.525 0.946 0.432 0.215 0.493 0.599 0.638 0.617 0.570 0.897 0.806 0.605
DCM-Net [19] 65.8 0.778 0.702 0.806 0.619 0.813 0.468 0.693 0.494 0.524 0.941 0.449 0.298 0.510 0.821 0.675 0.727 0.568 0.826 0.803 0.637
VMNet (Ours) 74.6 Sparse+Graph Conv 0.870 0.838 0.858 0.729 0.850 0.501 0.874 0.587 0.658 0.956 0.564 0.299 0.765 0.900 0.716 0.812 0.631 0.939 0.858 0.709

Unclassified Wall Floor Cabinet Bed Chair Sofa Table Door Window Bookshelf Picture Counter Desk Curtain Refrigerator Shower Curtain
Toilet Sink Other FurnitureBathtub

SparseConvNetInput Mesh Ours Ground Truth

Ceiling

Fig. 1. More qualitative results on Matterport3D Test [1]. The key parts for comparison are highlighted by dotted red boxes.
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Unclassified Wall Floor Cabinet Bed Chair Sofa Table Door Window Bookshelf Picture Counter Desk Curtain Refrigerator Shower Curtain
Toilet Sink Other FurnitureBathtub

SparseConvNetInput Mesh Ours Ground Truth

Fig. 2. More qualitative results on ScanNet Val [4]. The key parts for comparison are highlighted by dotted red boxes.
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